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INTRODUCTION

In recent years, there was a need of developing efficient�nondestructive integrity
assessment techniques for large area laminate structures, such as�detections of disbond,
crack, and corrosion in fuselage of an aircraft.  Together with�the improving tomography
and computer technologies, progress has been made in many fields�in NDE towards a faster
inspection.

Ultrasonically, Lamb wave is considered to be a candidate for�large area inspections
based on its capability of propagating a relatively long distance�in thin plates and its media-
thickness-dependent propagation properties [1-2].  Moreover, the�occurrence of disbonds,
corrosion, and even cracks often results in reduction of effective�thickness of a laminate.
The idea is to assess the condition of a structure by sensing the�response of propagating
Lamb waves to these flaws over long path length [3-4].  A series�of tests  in the sequence of
disbond, corrosion, and crack have been done on various types of�specimen to investigate
the feasibility of this approach.  This paper will present some of�the test results for disbond
detection on aluminum lap splice joints.

MEASUREMENTS AND TEST RESULTS

Laboratory specimens were made of aluminum sheets of 1 mm in�thickness.  Lap
splice joint and doubler are the two geometries of structures�primary interest [4].  The width
of adhesive-bonded area in a lap splice joint or a doubler was�typically 5 cm, and the
thickness of adhesive layer(mostly, epoxy) was approximately 200�micrometers or less.
Lap joints both with and without rivet holes were fabricated in�order to see the effects of
rivet rows on wave propagation.  For testing, various sizes,�shapes, and locations of
disbonds in the interface of aluminum sheets were built in by�leaving the designated areas
free of epoxy when the sheets were adhered.



To propagate Lamb waves, a pair of piezoelectric transducers was�placed on top of
the aluminum specimen and was separated at a distance, which�covers the whole bonded
region of a lap joint or a doubler.  Water was the couplant�between transducer and aluminum
plate.  Pulsed, pitch-catch method was utilized for amplitude and�time-of-flight
measurements.  Low-order Lamb modes, excited at a frequency in the�range from 1 to 2
MHz, propagated across the bonded area with direction�perpendicular to the length of the
bond.  During the testing, an automated scanner carried the�transducer-pair moving in
parallel to the length of the bond.  At each location of the�transducer-pair, amplitudes of the
two predominant signals, the lowest-order symmetric Lamb wave (S0�mode), which was
the first arrival, and antisymmetric mode (A0 mode), were�monitored by peak detectors.
Time-of-flight (T0) of waves was obtained through a pulsed-phase-locked-loop�circuitry in
terms of frequency [5].  The percentage of change in frequency�indicates the percentage of
change in T0.  At the end of test, amplitude and time-of-flight as a function�of transducers'
position were plotted and used to locate disbonds.  Scanning rate�could be adjusted
depending on the smoothness of the surface.  The ultimate limit of�time interval between
acquisitions of two data points is approximately 60 microseconds,�which is based on a 20
cm separation distance between transducers, and the velocity of�the slower A0 mode is
approximately 3.0 mm/µs in the working frequency range.  Generally, a round trip�of
scanning was enough to average out fluctuations in magnitude of�amplitude resulted from
the movement of transducers.  In all of our measurements on�different specimens, data was
repeatable with less than 10% uncertainties.  A block diagram�illustrating the setup for the
measurement is displayed in Figure 1.

In order to assure bond quality of the fabricated specimens and to�determine the
actual size of any built-in disbonds, several of the laboratory�samples were also inspected by
a standard ultrasonic test c-scan performed in a water bath with a�3.5 MHz or a 10 MHz, 0.5
in diameter immersion transducer.  Data was taken at approximately�every 2.3 mm.
Adhesive tapes were used to prevent water from penetrating into�the interface and epoxy
layer, which may create some artifacts due to the scattering of�waves by the edges of tapes.  
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Figure 1.  Block diagram of setup for Lamb wave measurement.
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Figure 2.  Curve shown is the amplitude variation of S0 mode as a�function of transducer-
pairÕs position.  The image is obtained with UT c-scan for a�doubler.  The dark ÒIÓ shaped
area is the designated unbonded area.  Amplitude increases while�wave propagates across
the disbond area.

However, these artifacts can be recognized easily.  The UT c-scan�results were also used to 
compare with those obtained with Lamb waves technique�quantitatively.

Curve shown in Figure 2 is the amplitude variation of Lamb waves�vs. transducer-
pair position taken on a doubler.  This fabricated specimen has a�"I"-shaped and all-way-
through disbond as illustrated in the image of UT c-scan (bottom�graph in Figure 2).  As
displayed, significant amplitude increase was observed when waves�passed through areas
with disbond, and its increased magnitude was proportional to the�propagation path through
disbond.  Lamb waves are in-plane waves.  Their amplitudes signify�the integrated result of
interactions of waves with material and structure over their path.� Therefore, location of a
disbond and percentage of areas with disbond(s) in the path of�waves can be estimated with
comparison method.  However, the estimation may become misleading�when there are
multi-site disbonds.  In this regard, measurement of time of�flight would give additional
information, since difference in wave velocity in bonded area and�unbonded area has been 
observed.

Similar results were obtained for embedded disbonds.  Figure 3�exhibits changes of
amplitude when the transducer pair was moved in parallel to as�well as in perpendicular to
several doublers.  In the former case, amplitude remained�relatively constant until waves hit
the disbonds.  In the latter, signal level is relatively high when�the path of wave is totally
within single layer areas, and relatively low when the path is�completely within bonded
areas.  As a matter of fact, the observed time-of-flight of waves�is slightly different in the
two areas.  And, it is believed that waves propagated in a�different mode in each area.
Again, amplitude increased whenever there was a through or�embedded disbond in the path
of wave beam.

The amplitude increase of sound wave in disbond area can be�attributed to less
energy transferred to the bottom layer of a doubler.  This�interpretation became more evident
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Figure 3.  Geometry of a multi-doubler specimen is shown on the�left.  Amplitude variations
are exhibited on the right with the scanning directions as�indicated respectively.

when the same measurements were performed on a lap splice joint. �For a lap joint, the
bondline is the only mechanical connection between the two plates,�and the amount of wave
energy passing from one plate to the other is thus heavily�dependent of bond quality.  A
disbond decreases the energy propagating in upper plate�transferred to bottom plate, and
results in a reduced amplitude picked up by a receiver transducer�placed on it, which is what
we observed.  Figure 4 shows the results of measurement on an�aluminum lap joint.  Again,
data was taken when the transducer-pair moved in parallel to the�long dimension of the joint,
with one transducer placed on each plate.  Disbonds with�dimensions 2 cm x 2 cm, 2 cm x 3
cm, 3 cm x 2 cm were built in for test.  As can be seen,�corresponding to four disbonds,
there are four valley-like minima shown in the curve whose�locations are coincident with the 

        
0 35

Distance (cm)

bonded area unbonded areaxxxx

xxxx

A
m

pl
itu

de
 (a

rb
. u

ni
ts)

Figure 4.  Amplitude variation of S0 mode as the transducer-pair�scans in parallel to the long
dimension of a lap splice joint.  Locations of the minima in the�curve are coincident with
those of the built-in disbonds.
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Figure 5.  Curve shown at the top is amplitude as a function of�transducer-pairÕs position
when both transducers are placed on the top plate of a lap joint. �Displayed in the middle of
the figure is UT c-scan image of the specimen with disbond as�indicated.  Curve on the
bottom is also the amplitude variation but when the transducers�are on the different plates.

centers of fabricated disbonds.  The amplitude decreases with a�slope instead of a sharp drop
to the minimum at each site because of the finite size of the�defects and the sound beam.

Samples of lap splice joint with rivet were also tested and the�amplitude variation
pattern is more involved due to the scattering of waves by column�of rivets. The typical
diameter of a rivet is 0.7 cm, and that of a transducer used in�our measurements is 1.27 cm.
A portion of the transmitting wave would be scattered to other�directions when the
transducer-pair is aligned with the column of rivets, which�results in a significant decrease in
received amplitude.  Therefore, a periodic up-and-down change in�amplitude is observed
when transducer-pair is scanned along a joint with evenly-spaced�rivet columns.  This
periodic change adds some complexity in data interpretation for�the disbond detection.
Fortunately, the response of wave to a disbond of size larger than�1 cm in diameter is quite
pronounced, and can be recognized.  As a matter of fact, the�disappearance of periodicity in
amplitude variation can be used to determine the existence of�defects.  This approach was
used in analyzing data collected from measurements engaged on lap�joints in the skin of a
Boeing 747 aircraft.  Results were fairly consistent with those�obtained by using other
techniques and by visual inspection after this particular section�of lap joint was removed
from the aircraft and torn apart.  Figure 5 exhibits the results�of scanning on a laboratory-
fabricated specimen.  This epoxy-bonded sample has three rows of�fasteners.  The round
black dots shown in the UT c-scan image indicate the positions of�fasteners.  Curve shown
below the image is amplitude variation of the lowest order�symmetric (S0) mode as a 



function of position of transducer-pair when each of them is on�different plates.  The peaks
represent the maximum wave energy propagating between rivet�columns.  As discussed
above, disbond would prevent transfer of wave energy between�plates, which has resulted
in a flat line in the curve meaning minimum energy is received. �The small peaks located at
the positions of rivet columns are the result of diffraction of�waves by rivet column, and
whose magnitude is quite dependent of the bond condition in the�area surrounding the rivets
and the distance between transducers.  For comparison, curve�displayed above the c-scan
image is the amplitude changes when both transducer are placed on�the upper plates.  As can
be seen, a larger amplitude reveals the existence of disbond,�which is similar to what has
been observed for doublers (figures 2 and 3).  Amplitude�variations of the lowest
antisymmetric (A0) mode were also measured and displayed similar�behavior to those of S0
mode.  However, A0 mode seems more sensitive to unevenness in�thickness of bondline.
This could be due to the much smaller wavelength of this�mode.

In general, velocity of Lamb wave is not only frequency dependent�but also
thickness dependent.  To the propagation of Lamb waves, a disbond�represents a relatively
large decrease in effective thickness of the media, which could�result in change of wave
mode and/or change of velocity.  A pulsed-phase-locked-loop was�employed to monitor the
change of velocity. This instrument compares the phase of its�pulsed output signal (which is
sent to transmitting transducer) with that of the returned signal�(from the receiving
transducer).  Phase difference of the two signals varies with the�change of sound velocity
propagating in the medium when distance between transducers is�fixed.  Before the scanning
a certain phase difference is chosen and locked.  During the�scanning, the loop responds to
the sound velocity change by adjusting its output signal frequency�(called reference
frequency) in order to keep this phase different constant as it�was locked.  Therefore,  a
reading from a frequency counter would reveal the information of�velocity changes.  In fact,
it can be proved that the percentage of increase in reference�frequency is the percentage of
decrease in time-of -flight.  Figure 6 displays the change in�reference frequency for the
specimen with disbond shown in figure 5 in the case when two�transducers were placed on
different plates.  As can be seen, reference frequency decreases�in the area where there is a 
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Figure 6.  Curve shown is the variation of time-of-flight as a�function of transducersÕ
location.  A decreased reference frequency represents the longer�time-of-flight caused by a
disbond.



disbond in the wave propagation path, and the magnitude of change�is proportional to the
dimension of disbond in the direction of propagation.  For this�specimen, disbond causes
longer time-of-flight, which indicates a slower wave velocity. �The small kinks appeared in
the relatively flat portion of the curve are found to locate at�edges of rivet columns, and are
ascribed to the interference effect of waves.

DISCUSSION

With the described measurements and results, it is demonstrated�that Lamb wave has
promising potential for detection of disbonds, at least,  in a�two-layered structure.  Although
most of the tests were done on laboratory-fabricated specimens,�field test on aircraft panel
also showed reasonably good results.  One of the advantage of�utilizing Lamb wave is its
capability of assessing the condition of layered structure over a�long path length.  The
provided results are the integrated information of its path.  If�detailed information at each
locations between the transducers is not crucial for an�assessment, then this is an approach
much more efficient than conventional point-by-point ultrasonic�measurements.  Especially
for a specimen geometry, such as that of a lap joint, a�one-dimensional scan should provide
the necessary information for disbond evaluation.  Otherwise, a�second scan in the other
dimension can be performed and would give the exact location of�disbond.

Disbond detection for structures having more than two layers has�not been tested
intensively yet.  In theory, if Lamb wave can be generated in a�multi-layered structure, a
disbond occurred in any one of the interfaces should be able to be�detected.  However, in
this case, the wave energy distribution may become an intriguing�problem and eventually
determine what modes can be generated with measurable amplitudes,�because the particle
displacement is a function of depth from the surface and this�property of Lamb wave may
become critical when media thickness is not much smaller than the�wavelength.

In summary, it is feasible using Lamb wave for a large area�disbond assessment.
Relatively simple amplitude and time-of-flight measurements on lap�joint type structures
have demonstrated this capability although there are many �improvements can be done in
terms of increasing the inspection speed and setup for the�measurements.
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